

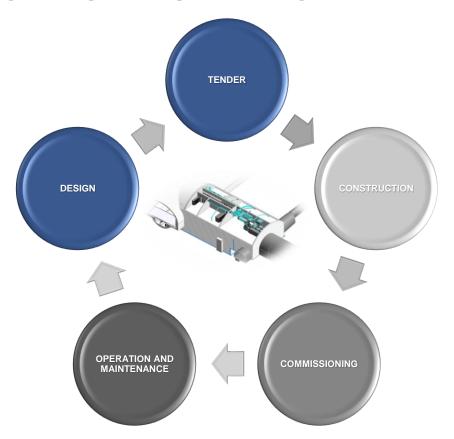
Austria • Belgium • France Germany • Italy • Portugal Netherlands • Spain • Switzerland

Deutscher Ausschuss für unterirdisches Bauen German Tunnelling Committee

BIM in Tunnelling

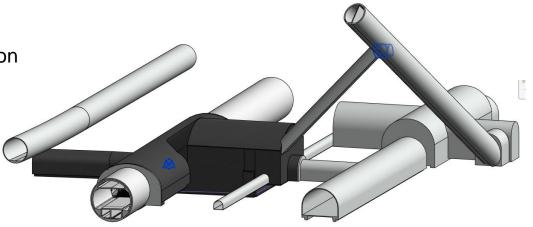
Webinar - March 18, 2021

Austria • Belgium • France Germany • Italy • Portugal Netherlands • Spain • Switzerland

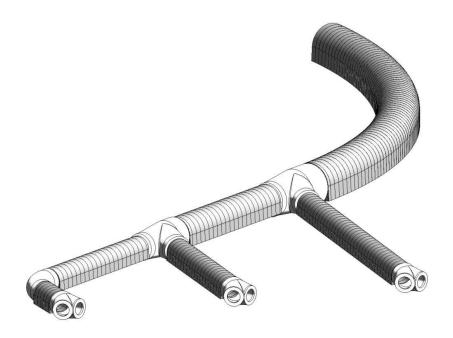

Deutscher Ausschuss für unterirdisches Bauen German Tunnelling Committee

BIM-based Design and Tendering

ETH Bau-Ing. Eric Carrera, M. Sc. Lombardi Engineering Ltd. (CH)


DAUB/EUTF-Webinar "BIM in Tunnelling" - March 18, 2021

CONTEXT OF TODAYS PRESENTATION


CONTENT

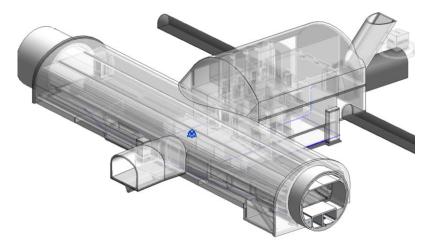
- Model-based design
 - BIM Goals, BIM use cases
 - BIM Execution Plan
 - Model-based coordination
 - Quantity take-off and cost estimation
 - Extraction of drawings
- Model-based tendering
 - Bill of quantities
 - Tender award
 - Model handover to contractor and construction preparation

2. tube Gotthard-Roadtunnel, Visualization

Model-based design

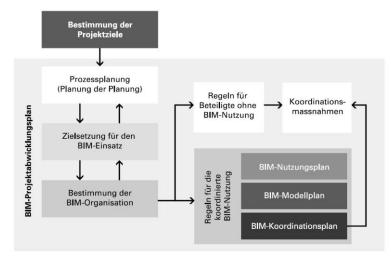
BIM Modell HPP, Visualization

Model-based design – BIM Goals and BIM use cases

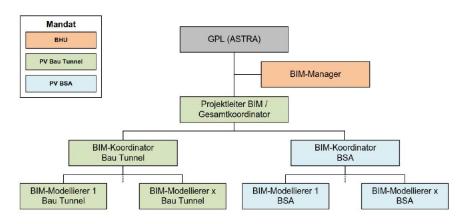

Definition of BIM Goals and BIM Use cases

- Definition of BIM goals by the client during the tendering phase → EIR / PIR
- Definition of BIM use cases by the client during the tendering phase → EIR / PIR
- Extension and specification of the BIM use cases by the client together with the designer → BEP
- Definition of precise and clear BIM use cases for your project.

BIM Goals	BIM Use cases	Requirements		
Improvement of the design quality	Model-based coordination	Creation of discipline models (format .ifc and native), Coordination-model in CDE (BCF)		
	Model-based quantity take-off	Direct extraction of quantities from native software to excel		
Use BIM model for operation and maintenance	Model-based maintenance	Update model to an «as-built» model and implement maintenance plan / define maintenance related attributes		
	Model-based trainings and simulations for rescue forces	Update model to an «as-built» model and export to VR/AR application		

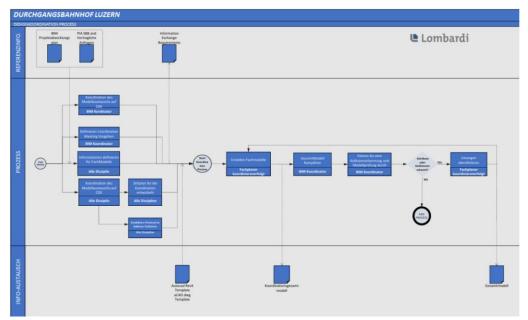

Examples of BIM goals and uses cases

- The importance of the BEP → designers Roadmap for every BIM-Project
- BIM-Goals and BIM use cases
- BIM Organization
- BIM-Process plan
- Information requirements
- Coordination and collaboration rules
- Model requirements
- ICT (Software, CDE, etc.)
- Quality Management


2. tube Gotthard-Roadtunnel, Visualization

- The importance of the BEP → designers Roadmap for every BIM-Project
- BIM-Goals and BIM use cases
- BIM Organization
- BIM-Process plan
- Information requirements
- Coordination and collaboration rules
- Model requirements
- ICT (Software, CDE, etc.)
- Quality Management

Extract of SIA D2051, content BEP

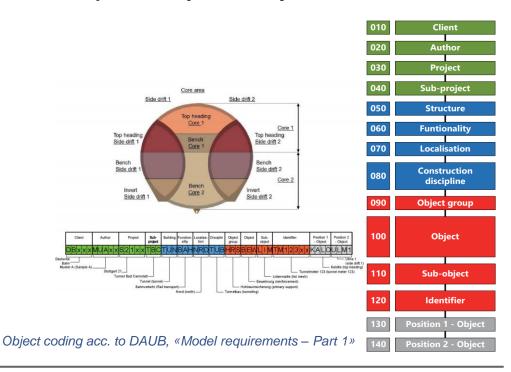

- The importance of the BEP → designers Roadmap for every BIM-Project
- BIM-Goals and BIM use cases
- BIM Organization
- BIM-Process plan
- Information requirements
- Coordination and collaboration rules
- Model requirements
- ICT (Software, CDE, etc.)
- Quality Management

Example of BIM Organization, Project: 2. tube Gotthard-Roadtunnel

BIM Execution Plan - BEP


- The importance of the BEP → designers Roadmap for every BIM-Project
- BIM-Goals and BIM use cases
- BIM Organization
- BIM-Process plan
- Information requirements
- Coordination and collaboration rules
- Model requirements
- ICT (Software, CDE, etc.)
- Quality Management

Example of BIM-Process Plan


BIM Execution Plan - BEP

- The importance of the BEP → designers Roadmap for every BIM-Project
- BIM-Goals and BIM use cases
- BIM Organization
- BIM-Process plan
- Information requirements
- Coordination and collaboration rules
- Model requirements
- ICT (Software, CDE, etc.)
- Quality Management

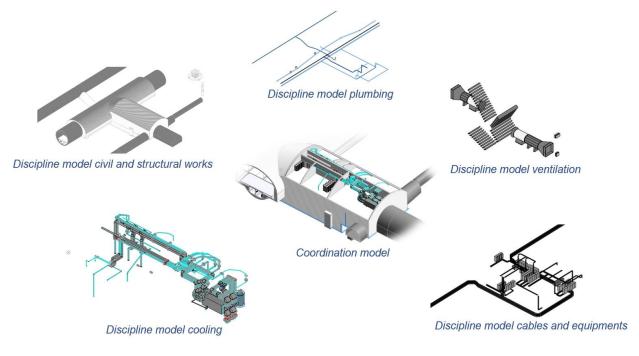
Example LoD-Matrix and attributes, Project 2TG

- The importance of the BEP → designers Roadmap for every BIM-Project
- BIM-Goals and BIM use cases
- BIM Organization
- BIM-Process plan
- Information requirements
- Coordination and collaboration rules
- Model requirements
- ICT (Software, CDE, etc.)
- Quality Management

BIM Execution Plan - BEP

- The importance of the BEP → designers Roadmap for every BIM-Project
- BIM-Goals and BIM use cases
- BIM Organization
- BIM-Process plan
- Information requirements
- Coordination and Collaboration rules
- Modelling requirements
- ICT (Software, CDE, etc.)
- Modell Definition
- Quality Management

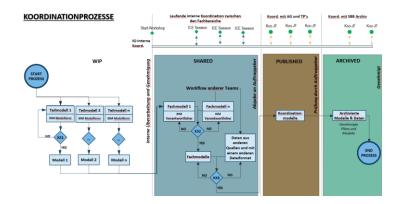
	I				
Funktion/Fachbereich	Disziplin	Lieferant	Software	Version	Format
Punktewolke für Landschaftsmodelle (bestehender Bahnhof)	Landschaft	Autodesk	ReCaP + Point Layout	2020	.shp .ifc .dwg
Georeferenzierte Lage bestehender Bauwerke	Landschaft	ArcGIS	ArcGIS	2020	.gdb
Architektonisches Modell	Architektur	Graphisoft	ArchiCAD	2020/2021	.ifc
Konstr. Ingenieurbau und Spezialtiefbau	Konstr. Ingenieurbau, Spezialtiefbau	Autodesk	Revit +Civil 3D	2021	.rvt &ifc
Fahrbahn	Bahnbau	Autodesk	Civil 3D	2021	.dwg .xlsx .ifc
Elektromechanik	Elektro- mechanik	Autodesk	Civil 3D + Dynamo	2021	.dwg .xlsx .ifc
Positionierung von Ringen und Halterungen	Rohbau	Autodesk	Civil 3D + Dynamo	2021	.dwg .xlsx .ifc
Statische und geotechnische Berechnungen	konstr. Ingenieurbau, Spezialtiefbau	SOFICAD	SOFISTIK	2020	.SOFISTIK
Positionierung geognostischer Vermessungen mit Lithographie	Geologie	Seequiring	Leapfrog WORK	2020	.aproj .ifdata
Modellierung von elektrischen, mechanischen und hydraulischen Systemen	Elektro- mechanik	Autodesk	Revit Inventor	2021	.rvt &ifc


Example required software for each discipline model and exchange-format

Model-based design – Model-based coordination

Model-based coordination and collaboration

- Definition of project and model structure and structure of discipline models;
- Definition of units (m, mm, m², etc.) and other geometrical constraints (i.e. coordinate system, zero point, etc.);
- Definition of codification an colours;
- Definition of collaboration systems and coordination workflows and meetings (ICE Sessions, etc.).

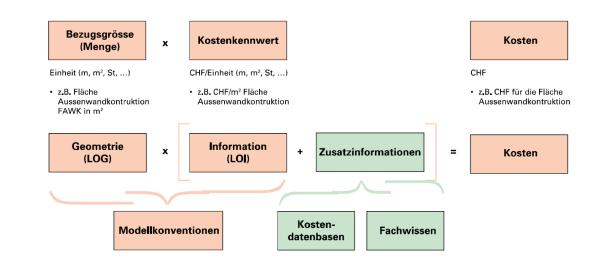


Example coordination model and discipline models, Project: 2. tube Gotthard-Roadtunnel

Model-based design – Model-based coordination

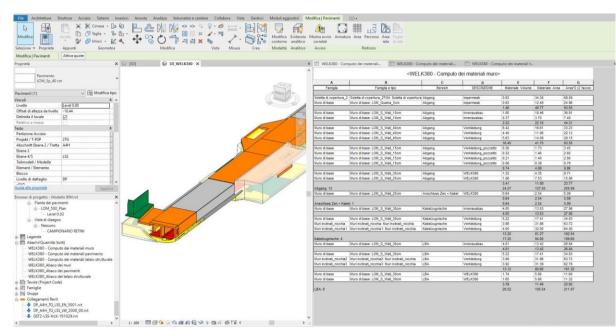
Model-based coordination and collaboration

- Definition of project and model structure and structure of discipline models;
- Definition of units (m, mm, m², etc.) and other geometrical constraints (i.e. coordinate system, zero point, etc.);
- Definition of codification an colours;
- Definition of collaboration systems and coordination workflows and meetings (ICE Sessions, etc.).



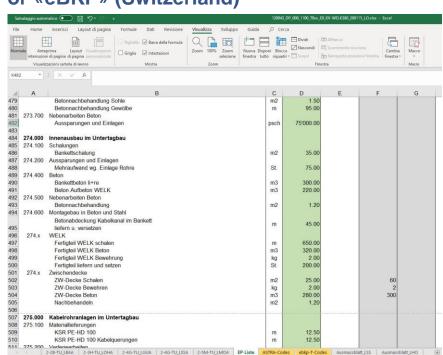
Example coordination workflow and ICE-Session, Project 2TG

Cost estimation (BIM 5D), principles


- Direct quantity take-off from BIM-Modell;
- Link model with unit prices.

Principles of cost estimation, extract of SIA D0271

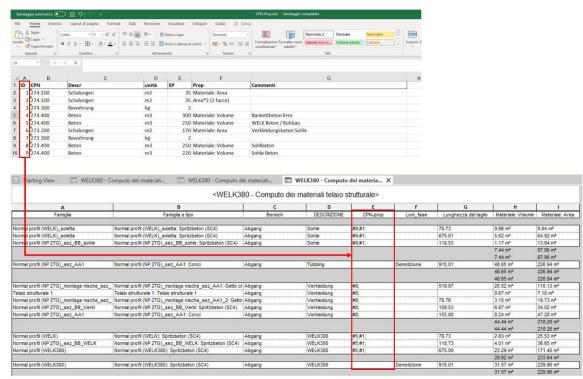
Cost estimation (BIM 5D), based on level «NPK» or «eBKP» (Switzerland)


- Direct quantity take-off from BIM-Modell;
- Definition of «NPK»-Structure as Attribute in the Modell;
- Unit prices list for every calculated «NPK»;
- Linking unit prices list with extracted quantities of the BIM-Modell;
- Further cost estimations methods (eBKP, see following slides).

Example of model-based cost estimation, quantities

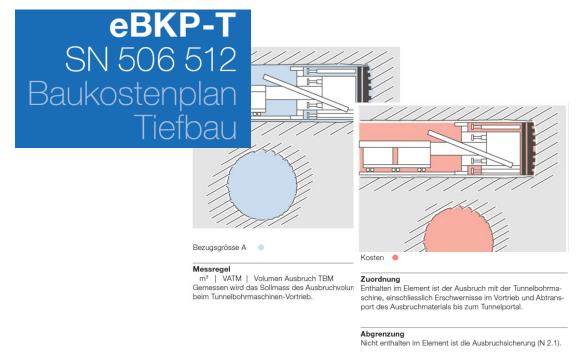
Cost estimation (BIM 5D), based on level «NPK» or «eBKP» (Switzerland)

- Direct quantity take-off from BIM-Modell;
- Definition of «NPK»-Structure as Attribute in the Modell;
- Unit prices list for every calculated «NPK»;
- Linking unit prices list with extracted quantities of the BIM-Modell;
- Further cost estimations methods (eBKP, see following slides).



Example of model-based cost estimation, Unit prices list

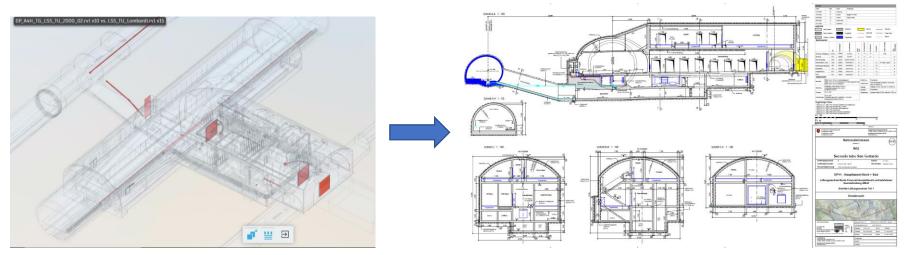
Cost estimation (BIM 5D), based on level «NPK» or «eBKP» (Switzerland)


- Direct quantity take-off from BIM-Modell;
- Definition of «NPK»-Structure as Attribute in the Modell;
- Unit prices list for every calculated «NPK»;
- Linking unit prices list with extracted quantities of the BIM-Modell;
- Further cost estimations methods (eBKP, see following slides).

Example of model-based cost estimation, linking unit prices with «NPK» positions

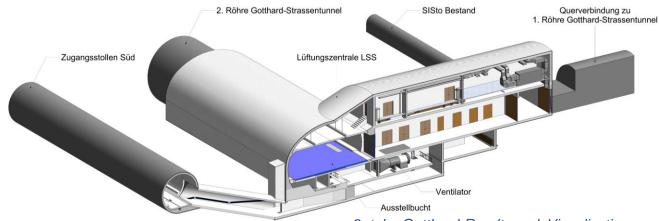
Cost estimation (BIM 5D), based on level «NPK» or «eBKP» (Switzerland)

- Direct quantity take-off from BIM-Modell;
- Definition of «NPK»-Structure as Attribute in the Modell;
- Unit prices list for every calculated «NPK»;
- Linking unit prices list with extracted quantities of the BIM-Modell;
- Further cost estimations methods (eBKP).



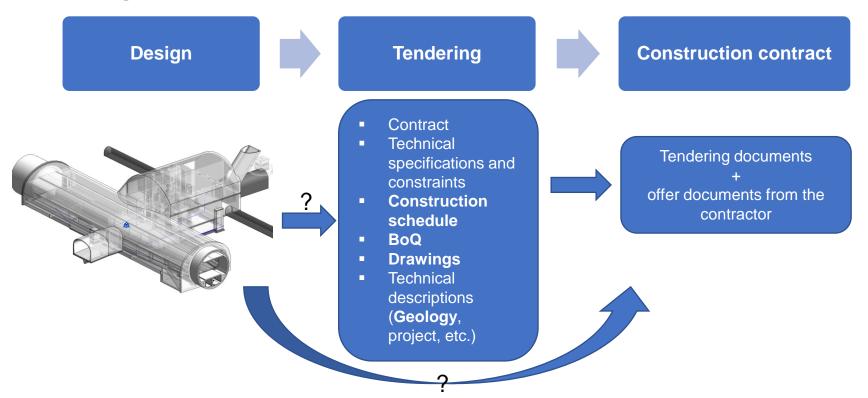
Extract «Anwenderhandbuch Baukostenplan Tiefbau»

Model-based design – Drawing extraction

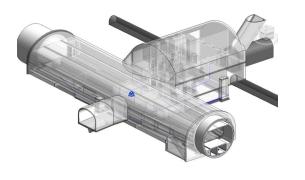

Drawing extraction

- Currently clients are still requiring «classic» 2D-drawings together with the BIM-models;
- Definition of clear and automatized template in order to optimize extraction process;
- Difficult to achieve the same quality as «classic» 2D-drawings

Example of 2D drawing extraction from a native Software

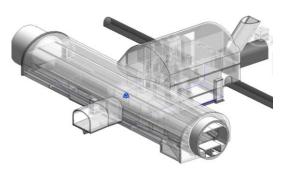

Model-based tendering

2. tube Gotthard-Roadtunnel, Visualization

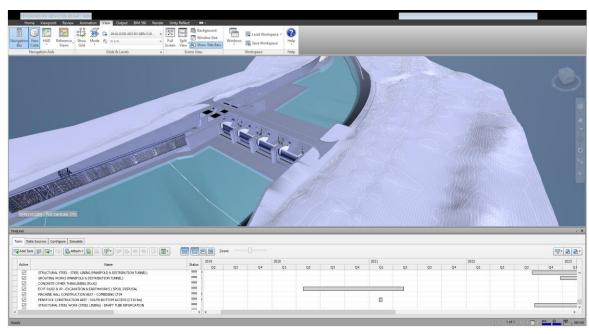

Model-based tendering – Bill of quantities and tender award

Transforming a BIM Model into a tender documentation

Model-based tendering - Bill of quantities and tender award


Transforming a BIM Model into a tender documentation

- BoQ (building materials associated with quantities, formwork, prefabricated elements, etc.)
- Drawings
- Technical descriptions (Geology)



- Contract
- Technical specifications and constraints
- BoQ (installations, construction equipment's, work-by-force account, time dependent costs)
- Technical descriptions (project, etc.)

Model-based tendering - Model handover to contractor

Model handover to the contractor and construction preparation

- Construction site preparation;
- Simulation of construction logistics;
- Detailed construction scheduling.

Example 4D simulation for construction logistics

Literature and references

- DAUB, Recommendation BIM in Tunnelling, 2019
- DAUB, Model requirements Part 1, Object definition, coding and properties Supplement to DAUB recommendation BIM in Tunnelling (2019), 2020
- SIA D2051, Building Information Modelling (BIM) Grundlagen zur Anwendung der BIM-Methode, 2017
- SIA D0270, Anwendung der BIM-Methode Leitfaden zur Verbesserung der Zusammenarbeit , 2018
- SIA D0271, Anwendung der BIM-Methode Modellbasierte Mengenermittlung, 2018
- VDI 2552 Building Information Modeling: Blatt 2 -Terms and definitions; Blatt 3 Model-based quantity determination for budgeting, time scheduling, contracting and accounting; Blatt 4 Requirements for data exchange; Blatt 5 Data management; Blatt 7 Processes, 2018
- CRB, eBKP-T Anwenderhandbuch Baukostenplan Tiefbau, 2017
- Visualization BIM Models ASTRA, JV Nuovo Gottardo (Lombardi, B+S, ILF, Emch-Berger), JV ILBP (IM Maggia, Lombardi, Basler&Hofmann, AFRY)

Austria • Belgium • France Germany • Italy • Portugal Netherlands • Spain • Switzerland

Deutscher Ausschuss für unterirdisches Bauen German Tunnelling Committee

Thank you very much for your attention

ETH Bau-Ing. Eric Carrera, M. Sc. Lombardi Engineering Ltd. (CH)

DAUB/EUTF-Webinar "BIM in Tunnelling" – March 18, 2021